One-bit Compressed Sensing with the k-Support Norm
نویسندگان
چکیده
In one-bit compressed sensing (1-bit CS), one attempts to estimate a structured parameter (signal) only using the sign of suitable linear measurements. In this paper, we investigate 1-bit CS problems for sparse signals using the recently proposed k-support norm. We show that the new estimator has a closed-form solution, so no optimization is needed. We establish consistency and recovery guarantees of the estimator for both Gaussian and subGaussian random measurements. For Gaussian measurements, our estimator is comparable to the best known in the literature, along with guarantees on support recovery. For sub-Gaussian measurements, our estimator has an irreducible error which, unlike existing results, can be controlled by scaling the measurement vectors. In both cases, our analysis covers the setting of model misspecification, i.e., when the true sparsity is unknown. Experimental results illustrate several strengths of the new estimator.
منابع مشابه
Frames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملOne-Bit Compressive Sensing with Partial Support Information
This work develops novel algorithms for incorporating prior-support information into the field of One-Bit Compressed Sensing. Traditionally, Compressed Sensing is used for acquiring high-dimensional signals from few linear measurements. In applications, it is often the case that we have some knowledge of the structure of our signal(s) beforehand, and thus we would like to leverage it to attain ...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملOne Scan 1-Bit Compressed Sensing
Based on α-stable random projections with small α, we develop a simple algorithm for compressed sensing (sparse signal recovery) by utilizing only the signs (i.e., 1-bit) of the measurements. Using only 1-bit information of the measurements results in substantial cost reduction in collection, storage, communication, and decoding for compressed sensing. The proposed algorithm is efficient in tha...
متن کاملOn Fast Decoding of High-Dimensional Signals from One-Bit Measurements
In the problem of one-bit compressed sensing, the goal is to find an ǫ-close estimation of a ksparse vector x ∈ R given the signs of the entries of y = Φx, where Φ is called the measurement matrix. Similarly, in the problem of compressed sensing from phaseless measurements, the goal is to estimate a k-sparse vector x ∈ C given only the magnitudes of the measurements y = |Φx|. For the one-bit co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015